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A Moving Mesh Numerical Method 
for Hyperbolic Conservation Laws* 

By Bradley J. Lucier 

Abstract. We show that the possibly discontinuous solution of a scalar conservation law in one 
space dimension may be approximated in L1(R) to within O(N-2) by a piecewise linear 
function with O(fN) nodes; the nodes are moved according to the method of characteristics. 
We also show that a previous method of Dafermos, which uses piecewise constant approxima- 
tions, is accurate to O(N-1). These numerical methods for conservation laws are the first to 
have proven convergence rates of greater than O(fN-1/2). 

1. Introduction. It is well-known that the solution of the hyperbolic conservation 
law, 

(C) Ut + =?(u)x=0, x e R, t > O, 
u(x,O) = uO(x), x E R. 

may be calculated by the method of characteristics where the solution is smooth; 
elsewhere, shocks evolve according to the Rankine-Hugoniot and entropy conditions 
[16]. In this paper we transform the method of characteristics into a numerical 
algorithm by showing that if one carefully chooses O(N) points to track by the 
method of characteristics, then for suitably smooth flux functions f and piecewise 
smooth, but possibly discontinuous, initial data uo, the error in the approximation is 
O(N -2) in L1(R). (For technical reasons our approximation may readily be calcu- 
lated only for convex fluxes and certain problems with nonconvex fluxes.) Because 
our approximation is taken from the space of discontinuous piecewise linear 
functions, our method exhibits optimal-order accuracy (1/N may be considered a 
measure of the average mesh size). We also show that a previous method of 
Dafermos that uses a piecewise constant approximation has accuracy O(N-1), and 
hence is also optimal-order accurate. Although previous work has been done by 
others on formally second-order accurate methods that generate convergent ap- 
proximations to solutions of (C) for some fluxes f (see [23], [8]), no other numerical 
method for scalar conservation laws has a proven convergence rate of more than 
O(N -1/2) 
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There have been basically two approaches to designing adaptive methods for 
evolution equations, and specifically for conservation laws. (Hedstrom and Rodrigue 
[12] survey adaptive methods for evolution equations.) The first, which we will call 
the adaptive mesh approach, includes more meshpoints in the mesh wherever the 
approximate solution of (C) has large gradients; meshpoints are added and removed 
from the mesh when deemed necessary, but meshpoints are generally not moved 
from one timestep to the next, and the number of meshpoints may vary greatly over 
time. Oliger and his students [1], [2], [22], Lucier [18], and others (see [12]) have 
taken this approach. Osher and Sanders [24] have proved convergence for a method 
that uses this approach for conservation laws, but the rate of convergence of their 
method when used with any specific mesh selection algorithm is unknown. 

The second, moving mesh, approach is to keep a more or less fixed number of 
meshpoints, and to move them according to a prescribed algorithm. Methods falling 
into this class include the moving finite-element methods of Miller [21] and Herbst 
et al. [13], which calculate the meshpoint positions as an integral part of the discrete 
weak formulation of the evolution equation; and the method introduced by Davis 
and Flaherty [6], who do a separate calculation at each time to determine a 
near-optimal grid on which to approximate the solution at that time. (A method may 
combine elements of each technique, of course.) One intriguing problem of justifying 
the moving-mesh approach is to show that even as shocks and regions of large 
gradients are forming in the solution, a predetermined number of meshpoints are 
sufficient to approximate the solution for all time. At least for convex fluxes, we 
show for our method that even though a smooth solution may develop shocks or 
discontinuous initial data should be smoothed into a continuous function with 
singularities, the meshpoints necessary for a certain level of approximation may be 
determined a priori. 

Moving meshpoints along the characteristics is quite natural; see the references in 
[13] for previous methods using this idea. Although our method may be considered 
the next higher-order generalization of a method introduced by Dafermos [5], the 
direct motivation for our work was Miller's moving finite-element method and 
Dupont's analysis [7] of various moving-mesh algorithms for evolution equations 
that have smooth solutions. Dupont requires, typically, that the L2-norms of the first 
derivatives of the solution of the evolution equation be finite, a condition that is not 
satisfied by the solutions of (C). Our method is also similar to a method of LeVeque 
[17] in which he approximates the solution of (C) by studying the long time behavior 
of certain piecewise constant approximations to (C). (One can apply the techniques 
in this paper to obtain error estimates for certain variants of LeVeque's method; see 
[19].) We must remark that we deal only with the semidiscrete problem; although the 
system of differential equations that determine the evolution of the approximation 
solution may be solved in closed form, the implementation of the method is left for 
another report. 

Harten and Hyman [9] introduced a constrained moving-mesh algorithm for 
systems of conservation laws; Sanders analyzed their method for the scalar equation 
[27]. By using an intelligent mesh positioning algorithm, Harten and Hyman 
achieved fairly spectacular computational results for various test problems in gas 
dynamics. (One difficulty with our method is that it is not obvious how to extend it 
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to systems of equations.) Sanders' analysis proved convergence of such methods for 
scalar conservation laws when the underlying difference scheme is monotone, but he 
did not obtain a rate of convergence any better than that for fixed-mesh numerical 
schemes. 

2. Approximation of Conservation Laws. Kruzkov [14] provided existence and 
uniqueness results for certain classes of weak solutions of (C) through the prescrip- 
tion of an entropy condition. The theory for solutions of (C) used in this paper is 
expressed in the following theorem. 

THEOREM 1 (KRUKOV). Iff is locally Lipschitz continuous, then for any u0 E BV(R) 
(the class of function whose first derivatives are measures) and for any T > 0 there is a 
unique bounded u E BV(R x [0, T]) fl C0([0, T], LlOp:(R)) with u(O) = uo that satis- 
fies the following entropy condition: for all 4 E CJ1(R X R), with 4 > 0, for all c E R, 
and for all t E [0, T], 

ff [u - cl? + sgn(u - c)(f(u) -f(c))4 j] dx"dt" 
(1) RxO, t] 

- | u(x",t) - clj(x", t) - Iu0(X") - cI0(X",0)] dx" > 0. 

The analysis of monotone finite-difference schemes for scalar conversation laws is 
more or less complete (see [4], [10], [15], [20], [26]). The more successful results are 
based on Kuznetsov's general theory of approximation for solutions of (C) [15]. A 
formulation of Kuznetsov's theorem in one space dimension follows. 

THEOREM 2 (KuZNETSOV). Let u be the entropy solution of (C) with uo E BV(R), 
and let v: R + -+ L'p,(R) have left and right limits for every t, and be right continuous. 
Pick a positive, symmetric function -q(() with support in [-1, 1] and integral 1, 
positive numbers e and eo, and let 

o(x,t) I( e 

Define the "Kruzkov form" 

SxS 

+ sgn(v(x", t") - u(x', t'))(f (v(x", t")) -f(u(x', t'))) 

* a W (X" - xI, t"-t') dx" dt" dx' dt' 

+? [Xo(x"-x', 0 - t')I vo(x") - u x', tl 
SxR 

- W(XI' - x', t - t') Iv(x", t - 0) - u(x', t')II dx" dx'dt', 

where S = R x (0, t). Then 

I|U(t) - V(t) ]L (R) ?|I U(0) - V(0) iLi(R) +(2e +IIfIILI eO)IUOIBV(R) 

+ sup || v(t' + T) - v(tW) IILI(R) -ASEN-E 
twflTh<= F0-ft'y<T< t-yt' 

where I If I ILip = SUN* -, KA~X) f (y)A/X Y) I 
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The following comparison theorem is the basis for our analysis. 

THEOREM 3. If f and g are Lipschitz continuous functions, u0, vo E BV(R), and u 
and v are the solutions of 

ut + f(u), = O, x e R. t > O, 

U(X,O) = UO(X), x e R, 

and 

vt+g(v)X=O, xeR, t> O, 

v(x,O) = vO(x), x e R, 

then for anyt > 0, 

| u(t) - v(t) I|L'(R) < 11 UO - VO 1L1(R) + t~lf gIlLipmin(I uO IBV(R), VO IBV(R)). 

Proof. We use Kuznetsov's theorem to compare v to u. Kruzkov [14] shows that 

(2) sup ||v(t' + T) - v(t) )|L'(R) < E0g1ILipl VOIBV(R). 
t',ITI< Eo, t <T< t- tt 

To bound -AE, one may use the fact that v satisfies the inequality of Theorem 1 
with the flux g, so that after setting c = u(x', t'), 4 (x", t") = x - x', t" -t' 

and integrating (1) over x', t', one only has to bound (after an integration by parts) 

If a.," [sgn(v(x", t") - u(x', t'))((f - g)(v(x", t")) 
SxS 

(3) - (f - g)(u(x',t'))) 

W(x" /- x', t" - t') dx"dt"dx'dt'. 

Because v(t) e BV(R) for each t, we can find an increasing function v(-, t)+ and a 
decreasing function v(, t)- so that v(-, t) = v(-, t)++ v(, t)-. Define v(-, t)t = 

v(-,t)+- v(-,t)-, and let h = f - g. Now, because sgn(a - b)(h(a)-h(b))= 
h(a V b) - h(a A b), where a V b = max(a, b) and a A b = min(a, b), a simple 
case analysis shows that 

Isgn(v(xj', t") - u(x', t'))(h(v(x"', t")- h(u(x', t'))) I 

- sgn(v(x'2', t") - u(x', t'))(h(v(x2', t")) - h(u(x', t')))| 

< |h(v(x"', t") V u(x', t')) - h(v(x", t") V u(x', t')) 

+ |h(v(x"', t") A u(x', t')) - h(v(x", t") A u(x', t')) I 

11 h IlLipl V'(X t") - Vt(X", t") 

Therefore, 

ax 
Iax", [sgne v(x"t, t") - u(x', t'))( f - g)(v(x", t") - u(x', t'))]| 

is bounded, as a measure, by If - gILipLI(aV/ax")(x" t")I. Substituting this expres- 

sion in (3), we may bound - A-toE by the integral of the convolution of the measures 

Il - gllLpILvxI and c. Because Iv(t)IBV(R) < IVoIBV(R) for all t, and w has integral 
one, the integral (3) is bounded by tOf - gILipLIvOIBV(R). Let e and eo tend to zero. 
The final result follows because of symmetry. [1 
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3. Application to Dafermos's Method. Dafermos's method [5], which was tested on 
both scalar equations and systems by Hedstrom [11], is described below. Let N be a 
positive integer. If the flux f is C2 (a modified argument shows that f need only be 
Lipschitz continuous and piecewise C2), then define the continuous, piecewise linear 
(with breakpoints at j/N for all j) function fE by fE( j/N) = f( j/N) for every 
integer j. Then l - f filLip < (2N)-lfl Pll Lx(R). If uo consists of a finite number of 
constant states, then Dafermos gives the entropy solution of 

uE?f (u)x =, x E R. t > O, 

uE(xO) = u0(x), x E R, 

in the following way. Dafermos first reduces the problem to a Riemann problem, 
because the initial datum has finitely many jumps. If uo is specified as 

uu) X <( 0,. 

U 
OWX U X > On 

with u1 < U r' then the vertices of the boundary of the convex hull of {(u, v) I u1 < 
U < Ur, v > fe(u)} will consist of a set of points (u,,fe(ul)), (u1, fE(ul))A ... 

(Uk, fE(U k)), (Ur, f E(Ur)) where { u1} is a linearly ordered subset of { j/N} . The 
solution will then be given by the following set of constant states: 

UE(x, t) u, for- < < 

tlu U U 2a 
u for fe(ul) f(Mu) < 

X fe(U 2) 
f 

E(Ul) 
1 2 1 ' 

U - U < - U r 

uk for fE(Uk) fE(Uk-a ) < X < fC(o ) fE(Uk) k k-1 k 
U U t Ur -u 

or u t~~~~~~~~~~~ Ur for f E(Ur) f E(Uk) <x< 

r 

A similar result may be inferred if u1 > Ur by considering the convex hull of the set 
{(U, V)lUr < u < u1, v < fE(u)}. Thus, for all time, the approximate solution uE will 
take on only finitely many states (no more than NI IUOII BV(R) plus twice the initial 
number of states). Theorem 3 implies that 

(4) I| U - U'IIL1(R) < 2Nf L-(R)U IO IBV(R) 

Thus, Dafermos's method is first-order accurate. The error's linear growth in time is 
consistent with Hedstrom's numerical results. 

Dafermos mentions that there is no known proof that only a finite number of 
wave interactions occur in any finite time interval if fE is not convex; however, I 
believe that this is the case for the special form of the flux f E and solution u E. 

4. A Method Based on Piecewise Linear Elements. We now assume that the flux f 
has three bounded derivatives. The initial data uo will be restricted to the class of 
functions in BV(R) whose first derivatives are also in BV(R) outside a finite set of 
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points { s }. We assume that the support of uO is contained in [-1, 1] and that the 
range of uO is contained in [0, 1]. (Generalizations to initial data that is constant 
outside an interval will be obvious.) Throughout the following, - will denote 1/N, N 
being an integer greater than one. Let 8 = mini, (-2, Is, - sI/2). 

The function f is approximated by a parabolic spline approximation f e, a 
continuously differentiable, piecewise quadratic function whose second derivative is 
discontinuous at the breakpoints 'q = k/N for k = 0, 1..I., N. The function f E is 
the unique parabolic spline that has (df /dx)(Qq) = f'(Pk)' with df /dx a linear 
function between qk and Ek? 1, and f e(0) = 0. Then If - f lLip < 4111 "'11L-(R)2 

(see [3]). 
The function u and the initial meshpoints (l are to be chosen as follows. 
(a) Modify uO near each discontinuity s, by redefining it as a continuous linear 

function between si - 8 and s, + 8, which we will take as our first meshpoints. 
(b) In the intervals where uO is smooth, insert a minimal number of meshpoints so 

that 

1 (l~l-, 1l |uff I A <e 62 duo| - 

t~,+1 dX BV(R\(sl}) 

(c) Set ul(41) = uo(t1) for all i, and let uO be a linear function between the 
meshpoints (i. 

(d) Insert new meshpoints 4, at the points where uO(t1) = rqke for all k. 
This approximation ensures that 

0- UO 111(R) < (IUOIBV(R) + | ) V(R\8s2}) 
(see [31). 

THEOREM 4. There are fewer than 4k + (juOI BV(R) + 2)N meshpoints S,, where uO 
has k discontinuities. 

Proof. Step (a) starts the mesh with 2k points. It is known [3] that step (b) 
introduces no more than N meshpoints. Consider now only the meshpoints (i added 
by step (d), order them separately, and call them v,. At most 2k + N intervals 
[v,, v,+ +1] may contain previously inserted meshpoints, and if [av, vi+ +1] contains no 
old meshpoints, then Iul(v,) - u'(vi+)l = 1/N, because u- is linear between the 
original meshpoints. Thus, step (d) adds at most (IUOIBV(R) + 1)N + 2k meshpoints 
v,. M 

The solution of the approximate problem, 

u? + f(u)x =0, xEE R, t > 0, 

ue(x,0) = u (x), x E R, 

may now be calculated, for example, by the method of characteristics. Because f E is 
quadratic on the range of uE in each interval (ti(t), ,+ 1(t)) where ue is continuous, 
u is linear on that interval, and only the nodal values need be determined. The 
evolution of shocks may again be determined by the Rankine-Hugoniot condition, as 
long as the entropy condition is verified. In particular, ue(x, t) may be found as 
follows. Let u (x, t) have left and right limits of 1,(t) and r,(t) at the meshpoint 

(i(t). Then 1,, r1, and (, satisfy the following differential equations (for clarity, we 
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write f in place of fe): 

(f'(1i(t)) if 1i(t) = ri(t) 

(5a) dt i f(11 (t)) - f(r1()) if I(t) tr(t), 

(0 if 11(t) = ri(t) t 

(5b) d11 = i 1,( t) - r~im1( t) / f ( lo( t)) - f( ri( t) )-fa t ) 

dl-i if(t) - =rr(t) 

00 if 1i(t) = r rt)t 

(5c) dr - 1,+(t) - ri(t) (f(i((t)) -fr (t)) ( Lit = - - 
00(t 11(t) - r1(t) 

if li(t) * ri(t). 

Note that most of the equations are trivial; whenever ue is continuous at (i(t), 
dti/dt is constant, while dri/dt and d1i/dt are 0. That is, the meshpoint moves along 
the characteristic of the perturbed equation, and the approximate solution is 
constant along the characteristic. Even where there is a shock in the approximate 
solution, the system of equations may be solved in closed form between shock 
interaction times. The behavior of ue on either side of a shock is easy to determine, 
and one only needs to find the trajectory of the meshpoint (i. With the help of the 
symbolic manipulation program Macsyma, I used the fact that mass is conserved 
near the discontinuity to find that the shock trajectory is given as part of the zero set 
of a polynomial P(x, t) = 0 of total degree three. The coefficients of the polynomial 
are given in Table 1. To the left of the shock, the approximate flux has the value 

f(u) = au2 + 2bu + cl, and ue has initial slope s,; similarly to the right of the 
shock. The initial shock position and the left and right limits of ue(x, 0) at the shock 
are given by (i, li, and ri. 

The entropy condition must be checked for the solution ue, however. That is, if ue 

is discontinuous at (i(t), then 

(5d) f r( / (0t) ) - V( ri ( )) >1 
f V;) f r(( ( 

)) for e- [ rj ( t) , ' ( t)] (5d) 
iit)- 

- fr 
t)e[r1t) 1tt) 

if 1i(t) > ri(t), or 

(5e) 
f 

-(ri 
( f ( () < f V) f 

- 
((l (0) for HE- [i1(t), ri(t)] 

if ri(t) > li(t). It is not difficult to show that if f is convex, then f is convex, and, 
because ur is continuous, the entropy condition will be trivially satisfied for any 
solution of the above system of differential equations, and no new meshpoints are 
introduced during the evolution of uV. There are cases when f is not convex where 
the entropy condition is trivial to verify for certain data; see the second example 
below. We are led to the following theorem. 
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TABLE 1 

Coefficients for discontinuity curve P (x, t) = 0 

x t 2(ar -al)SISr 

xt2 8(albr - arb,)SISr 

8(a~ar(cr - c) + arb7 -alb7)slsr 

2 
X 

2 
S Sr 

4[(a - ar)SlSrt, 

xt + (arlisr -alris,) + (brSr- bls,)] 

8(arb, - albr)Slsrti + 4(bl s, - br S) 

t2 +4a a) -12 t2 + 4alar(r, -I r) + 8(abrr~s, -- arblliSr) 

+ 4(arcrsr -arclsr+ alcrS, alcls,) 

X 2(5r - S) + 2(/i - r,) 

2(ar - aS) SSr i 

t +4(airis, - arlisr + bzs, - brSr)(i 
+ 2(f ( (r1) f -(/1)) 

1 (s, - Sr)72 + 2(ri - lj)tj 

THEOREM 5. Let f E Wo3,(R) be convex, and let uO e BV(R), with u' in BV(R) 
outside k points { si). If u(x, t) is the entropy solution of (C), then by choosing 
4k + (IOU01BV(R) + 2)N meshpoints fj and solving the algebraic-differential system 
(5a-e) with initial data #(O), ri(O), and li(O) derivedfrom u', we ensure that 

||Ue(, t) u(, t) ||L'(R) 

[O I BV(R) 
|dx B V(R\{ 

s, 
))+4 |UO|s V(R) 11 f ||L'(R)t IN 

Because ue is specified in terms of O(N) parameters, this algorithm generates a 
second-order approximation to u. 

Note that the error estimate applies for nonconvex f as well; the only questions 
that arise are whether more meshpoints are generated during the evolution of u', 
and whether infinitely many wave interactions may occur in a finite time interval. 
We believe that both statements are false for the special form of f e given above. 

It is interesting to note that the above node placement strategy is not optimal for 
higher-order approximations. Specifically, consider the problem, 

ut +(U3)x = 0, x E R, t > 0, 

with initial data that is 1 for x < 0, 1 - x for 0 < x < 1, and 0 for x > 1. Then, 

I , xx 1/2, 

u ( x,/I 6)= I - ~2 -x-j I/2x1, < x , 
0O, I1_ x . 
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If the nodes are initially placed at the points j/N, for j between 0 and N, then the 
nodes at time 1/6 are placed at (1 + j2/N2)/2 for j between 0 and N. One may 
then calculate iU, the best L1(R) approximation to u(-, 1/6), using continuous 
piecewise quadratic elements with the additional requirement that iu(x) = u(x) 
whenever x is a node (see Rice [25, p. 102]). The first term in the asymptotic series in 
N of I1u(-, 1/6) - UIIL1(R) is 

N-1 

16N3J.__ 2j+ 1 

This calculation shows that the best L1(R) approximation with the given nodes has 
error O(N - 3log N), and not O(N -3), which is possible with a different node 
placement (see [3]). Thus, the node placement algorithm is not adequate to ap- 
proximate the given singularity within the class of piecewise quadratic functions. 

5. Computational Results. Two examples illustrate the placement of the mesh- 
points by our algorithm. The first example, illustrated in Figure 1, is the solution of 

ut +(u3)x = 0, x e R. t > O. 

u(x,0) = X[Ol](x), x e R, 

up to time 1/4 with N = 20. For this problem, we have 

IUOIBV(R) = 2 IdUo/dXIBV(R\{si}) = 0, and I|f ..IL-(R) = 6. 

We can conclude that IHu(t) - Ue(t)IIL1(R) = (2 + 3t)e2; the error is less than 0.007. 

0 
u6(x, 0. 25) 1 X 

FIGURE 1 

The graph of UE(X, 1/4) for the first example (see text). The 
tick marks indicate the position of the nodes, between which the 
solution is linear. 
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0 
U(X, 1) 1 X 

FIGURE 2 

The graph of ue(x, 1) for the second example (see text). The 
tick marks indicate the position of the nodes, between which the 
solution is linear. 

The second example (Figure 2) has f(u)= 2(1 - cos(Sru)) and u0 X=(- O]. 
This flux is not convex, but the only difficulty in determining the numerical solution 
is in calculating the location of the shock. By conservation of mass, one places the 
shock so that the integral of u between - -2 and the position of the shock, in which 
region u may be calculated from (5), is equal to e2 + (f (1) - f (O))t. In this 
example, N is 40 and t is 1. We have incurred a mass error equal to (f(1) - f '(1))t, 
which is of the order of -2t. The same level of approximation may be achieved 
without a mass error by using the modified approximate flux fe(u) - 

f e(u)f(1)/f eV). 
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